PREDICTION OF SLOPE STABILITY STATE FOR CIRCULAR FAILURE: A HYBRID SUPPORT VECTOR MACHINE WITH HARMONY SEARCH ALGORITHM
نویسنده
چکیده مقاله:
The slope stability analysis is routinely performed by engineers to estimate the stability of river training works, road embankments, embankment dams, excavations and retaining walls. This paper presents a new approach to build a model for the prediction of slope stability state. The support vector machine (SVM) is a new machine learning method based on statistical learning theory, which can solve the classification problem with small sampling, non-linearity and high dimension. However, the practicability of the SVM is influenced by the difficulty of selecting appropriate SVM parameters. In this study, the proposed hybrid harmony search (HS) with SVM was applied for the prediction of slope stability state, in which HS was used to determine the optimized free parameters of the SVM. A dataset that includes 55 data points was applied in current study, while 45 data points (80%) were used for constructing the model and the remainder data points (10 data points) were used for assessment of degree of accuracy and robustness. The results obtained indicate that the SVM-HS model can be used successfully for the prediction of slope stability state for circular failure.
منابع مشابه
A HYBRID SUPPORT VECTOR REGRESSION WITH ANT COLONY OPTIMIZATION ALGORITHM IN ESTIMATION OF SAFETY FACTOR FOR CIRCULAR FAILURE SLOPE
Slope stability is one of the most complex and essential issues for civil and geotechnical engineers, mainly due to life and high economical losses resulting from these failures. In this paper, a new approach is presented for estimating the Safety Factor (SF) for circular failure slope using hybrid support vector regression (SVR) and Ant Colony Optimization (ACO). The ACO is combined with the S...
متن کاملAPPLICATION OF THE HYBRID HARMONY SEARCH WITH SUPPORT VECTOR MACHINE FOR IDENTIFICATION AND CALSSIFICATION OF DAMAGED ZONE AROUND UNDERGROUND SPACES
An excavation damage zone (EDZ) can be defined as a rock zone where the rock properties and conditions have been changed due to the processes related to an excavation. This zone affects the behavior of rock mass surrounding the construction that reduces the stability and safety factor and increase probability of failure of the structure. This paper presents an approach to build a model for the ...
متن کاملA Hybrid Support Vector Regression with Ant Colony Optimization Algorithm in Estimation of Safety Factor for Circular Failure Slope
Slope stability is one of the most complex and essential issues for civil and geotechnical engineers, mainly due to life and high economical losses resulting from these failures. In this paper, a new approach is presented for estimating the Safety Factor (SF) for circular failure slope using hybrid support vector regression (SVR) and Ant Colony Optimization (ACO). The ACO is combined with the S...
متن کاملA New Model for Email Spam Detection using Hybrid of Magnetic Optimization Algorithm with Harmony Search Algorithm
Unfortunately, among internet services, users are faced with several unwanted messages that are not even related to their interests and scope, and they contain advertising or even malicious content. Spam email contains a huge collection of infected and malicious advertising emails that harms data destroying and stealing personal information for malicious purposes. In most cases, spam emails con...
متن کاملHybrid Simulation of a Frame Equipped with MR Damper by Utilizing Least Square Support Vector Machine
In hybrid simulation, the structure is divided into numerical and physical substructures to achieve more accurate responses in comparison to a full computational analysis. As a consequence of the lack of test facilities and actuators, and the budget limitation, only a few substructures can be modeled experimentally, whereas the others have to be modeled numerically. In this paper, a new hybrid ...
متن کاملSlope Deformation Prediction Based on Support Vector Machine
This paper principally studies the prediction of slope deformation based on Support Vector Machine (SVM). In the prediction process,explore how to reconstruct the phase space. The geological body’s displacement data obtained from chaotic time series are used as SVM’s training samples. Slope displacement caused by multivariable coupling is predicted by means of single variable. Results show that...
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
عنوان ژورنال
دوره 5 شماره 1
صفحات 103- 115
تاریخ انتشار 2015-01
با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023